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The standard encoding procedure to describe the chaotic orbits of unimodal 
maps is accurately investigated. We show that the grammatical rules of the 
underlying language can be easily classified in a compact form by means of a 
universal parameter r. Two procedures to construct finite graphs which 
approximate non-Markm, ian cases are discussed, showing also the intimate 
relation with the corresponding construction of approximate Markov partitions. 
The convergence of the partial estimates of the topological entropy is discussed, 
proving that the error decreases exponentially with the length of the sequences 
considered. The rate is shown to coincide with the topological entropy h itself. 
Finally, a superconvergent method to estimate h is introduced. 

KEY WORDS: Kneading theory; graphs; topological entropy; Markov 
partitions. 

1. I N T R O D U C T I O N  

Much progress has been recently made in the understanding of deter- 
ministic chaos. It is now widely accepted that a complete characterization 
of chaotic behavior is achieved (at least from a topological point of view) 
by first determining a generating partition which allows one to encode each 
trajectory in terms of a suitable symbol sequence, and then by finding the 
grammatical rules of the associated language. (1 3) This program can be 
considered as entirely accomplished whenever a possibly minimal graph, (4) 
generating all grammatically correct symbol sequences, is constructed. The 
difficulty of the task is directly related to the  infinite grammar associated 
with typical chaotic systems. As a consequence, most authors have 
restricted their analysis to cases described by regular languages (i.e., loosely 
speaking, by a finite set of rules). A first relevant distinction must be made 
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between one- and higher-dimensional maps. While a general scheme to 
build a directed graph has been already introduced for 1D maps, ~1) only a 
preliminary approach has been developed for 2D maps, in terms of a 
suitable "pruning front. ''~2~ More recently, a new technique based on 
progressive 1D approximations of a 2D map has been proposed, ~5) which 
seems very promising to determine the grammatical rules. 

Here, restricting our analysis to 1D unimodal maps, ~6) we briefly 
review the technique introduced in ref. 1 and we describe a new technique 
to approximate the dynamics of a generic chaotic state in terms of 
"increasingly complicated" regular languages. The procedures resemble the 
approach to irrational numbers through truncated numbers of increasing 
length, and through rational numbers, respectively. The first method, less 
accurate, can, however, be easily extended to any dynamical system charac- 
terized by a finite generating partition. Both techniques owe their successful 
implementation to the existence of a universal parameter r which sum- 
marizes in a compact form the precise ordering of chaotic states. ~6) In 
particular, z, which can be easily determined from the kneading sequence, 
allows one to reconstruct a general bifurcation diagram, which contains all 
the known information on the ordering of periodic cyclesJ 7) Periodic 
windows where h remains constant are easily identified as well. Our 
approach proceeds in the spirit of ref. 8, where a similar technique is intro- 
duced for iterated maps of the interval. 

The existence of a universal parameter makes it possible to introduce 
a superconvergent method to compute the topological entropy h and, in 
turn, to quantify its local dependence on T itself. The investigation of the 
resulting fractal structure of h(r) allows one to quantify the error on the 
estimate of h, determined by using the grammatical rules extracted from the 
knowledge of all symbol sequences up to length n. The accuracy turns out 
to be of the order of exp( -hn)  in generic cases. 

Finally, the relation existing between the nodes of a suitably con- 
structed graph (with the associated adjacency matrix) and the elements of 
an approximate Markov partition (with the associated transition matrix) 
are shown, thus solving a problem raised by GrassbergerJ 1) 

The plan of the paper is a follows. In Section 2 we present the 
encoding procedure, discussing the admissible values of the universal 
parameter z. In Section 3, the two different approaches to the construction 
of graphs are introduced, showing also the relations between truncated 
graphs and approximations with finite Markov partitions. In Section 4, we 
present a superconvergent method to determine the topological entropy h 
and discuss the fractal dependence of h on r. In Section 5 the spectral 
properties of the graphs are briefly presented, showing in particular that 
the two procedures introduced in Section 3 yield the same topological 
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spectrum. The relations between the characteristic polynomial of a graph 
and the standard statistical mechanical formalism applied to dynamical 
systems are also discussed. As a result, it is shown how the graph for- 
malism is a powerful tool to investigate the analytic structure of topological 
~-functions. In Section 6 further remarks are given, mentioning also some 
open problems and future perspectives. 

2. THE ENCODING PROCEDURE 

To start with, let us recall some well-known facts. Without loss of 
generality, we can say that a continuous map f :  I ~  I of the unit interval 
onto itself is unimodal if f ( 0 ) = f ( 1 ) = 0  and f has a unique maximum at 
Co with 0 < c 0 < 1 (see Fig. 1). Such maps are perhaps the simplest models 
that simulate the complex behavior of real systems approaching chaos, at 
least insofar as they stretch and fold a given domain. For  example, the 
logistic map fu = / ~ x ( 1 - x )  belongs to this class, as well as other quadratic 
maps frequently studied in dynamical systems theory. Note that for a 
unimodal map f 

f ' (x)>~O if x < c  o 
(2.1) 

f'(x)<<,O if X>Co 

. 

X ,  

O. 
c2 Co c3 X c~ 

O. 1. 

Fig. 1. Typical example of a unimodal map x '  = f ( x ) ,  with the abscissa c o of the max imum 
and its first iterates ci, explicitly reported. 



266 Isola and Politi 

In this case it is known that the orbit of the critical point c o determines, 
in some sense, the whole dynamics of the map. This observation is the 
starting point for the construction of that particular version of symbolic 
dynamics referred to as kneading theory (see ref. 6). In this context, if x e I, 
we denote the itinerary of x under f through the sequence S ( x ) =  
(SoSlS2...), where si is either 0 or 1, depending upon whether f i ( x )  is ~<c0 
or >c  0, respectively (the critical point is taken to be 0 without loss of 
generality). The itinerary of cl [ =f (c0) ]  is the kneading sequence K of f 
Moreover, we say that a given sequence s of 0's and l's is admissible (or 
"allowed") for f if there exists x e I such that S(x)  = s. One of the simplest 
ways to decide whether a given sequence s = (sl, s2,...) is allowed or not is 
as follows. 

First, let us denote the shifted sequence (s2, s3,...) by a(s), and the 
sequence (tl, t2,...) by r(s), where the symbol tk is the number (modulo 2) 
of l's in s up to the position k, i.e., 

k 

tk= ~ si(mod 2) (2.2) 
i = 1  

so that t~ e {0, 1 } for each k. 
Second, order the ~(s) as if they were binary representations of real 

numbers in [0, 1 ]; namely, represent them as 

~(s)=0. t l t2  . . . .  ~ tk2 k 

k = l  

It is straightforward to realize that if r (s )=  a (with a s [0, 1]), then 

r(a(s)) = T(a) (2.3) 

where T is the tent map 

2x if x~ [0, 1/2] 
T(x)=  2 ( 1 - x )  if x~ [1/2, 1] (2.4) 

Thus, for the tent map, any point x~ [0, 1] with a given itinerary S(x)  
satisfies ~(S(x)) = x. 

Finally, for any unimodal map f with kneading sequence K, a symbol 
sequence s is allowed if and only if 

r(am(s))<~r(K) for all m>~0 (2.5) 

This inequality is presented in a more compact form than in ref. 9, where 
it was first derived. An intuitive justification follows by observing that since 
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cl = f ( c o )  is the maximum o f f ,  it must be true that fn(x)<~ c1 for all x e I 
and all n >~ 1. Moreover, the above construction provides an ordering on 
itineraries which is the same as that on the real line. 

Relation (2.5) provides a simple rule to find a list or forbidden words 
(FW): write down the sequence (t 1, t2,...) corresponding to z(K) and 
exchange the nth symbol in the kneading sequence K whenever t, is 0. 
Obviously, there is at most one FW of given length n and the number of 
FWs of length ~<n equals the number of 0's in (t~, t2,...) up to the position 
n.  (D 

For  instance, the logistic map with # = 4  gives K =  1000... and 
r (K)= 111 .... In this case no FWs of any length are present, i.e., any 
sequence (Sl, s2,...) is admissible. Less trivial situations appear if we 

decrease the parameter p. For instance, at # = # 0 -  1 + ~ (#o will be 
always considered throughout, the paper as a paradigmatic example of 
typical chaos, to better describe the various approaches here presented), 

K =  100101011001001010111101... 

and 

z(K) = 111001101110001100101001... 

In this example the FWs of length ~<8 are 1000,10011,10010100. 
If we apply condition (2.5) to the kneading sequence K itself, we get 

z(am(K)) ~< r(K) for all m >~ 0 (2.6) 

This means that K must be a maximal sequence. (6~ Henceforth, let us agree 
to call any z(K) satisfying (2.6) consistent (actually corresponding to a 
kneading sequence). Notice that, since the consistent z's are related to 
nothing but the kneading sequences of unimodal maps, they constitute 
indeed a sort of universal encoding for these models. In what follows we 
shall be interested in characterizing the set A c [-0, 1 ] of all consistent z's. 
Note that, by virtue of (2.3), one could even forget that each z e A  is 
related to a particular kneading sequence, and construct the set A as the 
set of those numbers z s [0, 1] satisfying the inequality 

Tm('r) ~ "r for all m >~ 0 (2.7) 

A progressive construction of this set can be obtained through a "strange 
repeller" approach: for any number 0 < a < 1, representing a possible z e A, 
iterate it with the tent map T and discard those a's that turn out to be 
nonconsistent after n iterations, according to rule (2.7). In this way, one 
obtains a set A. which approximates A at order n. 
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The first interesting fact is the presence of "gaps" (forbidden open 
intervals) that appear in hierarchical order as n increases. The presence of 
isolated points inside the gaps is also observed. As a matter of fact, there 
is a one-to-one correspondence between the gaps in A and the periodic 
windows in the bifurcation diagram of unimodal maps: the lower bounds 
of the gaps correspond exactly to the tangent bifurcation points responsible 
for the birth of periodic windows, whereas the isolated points correspond 
to period-doubling bifurcations. 

In order to understand more this point precisely, let us note that for 
any 3 corresponding to a kneading sequence K, two different situations 
may occur: 

(1) K is either nonperiodic or eventually periodic, and then 

3(gm(K)) < 3(K) for all m ~> 1 

(2) K periodic with period l, and then 

3(am(K)) < 3(K) for m = 1, 2 ..... l -  1 

and 

3(a'(K)) = 3(K) 

Clearly, the latter constitutes an extreme situation in order that (2.6) be 
verified. This indicates that the gaps must be somehow related to periodic 
kneading sequences. More precisely, consider a kneading sequence K which 
is periodic with period l, i.e., K =  (sl,..., st, sl,..., st) (a bar over a finite 
block of symbols denotes a sequence with an infinitly repeating basic 
block), then the corresponding 3(K) is represented by the periodic sequence 
(q ..... th, t~ ..... th) whose period h is equal to l if the number of l's in 
(s~ ..... st) is even, so that tt = 0, whereas h = 2l if this number is odd and 
t l= 1. 

From Eq. (2.4) and from the chain rule, we have that the multiplier 
l 1 l-lj=o T'(TJ(3)) is positive (negative) and > 1 (<  1) for any periodic orbit 

characterized by an even (odd) number of l's. In the former case, this 
means that any point 3 '>  3, in a suitably small right-neighborhood of ~, 
will be such that Tt(3 ') > 3', that is, nonconsistent. Therefore, any such 3 
defines the greatest lower bound of a gap of hierarchical level/. A similar 
reasoning shows that orbits with an odd number of l's naturally represent 
the right band edges of the gaps of level l. However, simply by doubling the 
number ~of iterates, we see that they represent left band edges of gaps of 
hierarchical level 21 as well. This means that these 3's are isolated points. 
They are related to period-doubling bifurcation points which can be 
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constructed without any reference to the underlying map. Let us define the 
pattern corresponding to a purely periodic kneading sequence as the sub- 
sequence Po = (s~, s2,...) contained between two successive symbols c (for 
the sake of clarity, we let the critical point have its own symbol c): 

C---~SI'-"-)'S2 ----~ "'" ----)'C 

Of course, if Ko = (Sl ..... sl, sl ..... Tt) is the kneading sequence corresponding 
to the lower bound of a gap, then Po = (sl,..., s1 1). The pattern associated 
with the first harmonic K1 is (7) 

P1 = PorlPo (2.8) 

where ~/is 0 if P contains an odd number of l's, and 1 otherwise. Clearly, 
if T o is the coding of the sequence Po, then the coding of P~ is given by 

•1 = rolzo (2.9) 

where ~ indicates the complement (module 2) of ~. This procedure can be 
again applied to K~ to obtain the second harmonics, and so forth. It is 
immediately realized that all the isolated points in A can be constructed in 
this way. As a consequence, as long as we consider any open interval in A 
containing at most isolated consistent points [i.e., those for which (2.7) 
holds] as a gap, the right gap edges are naturally identified as the period- 
doubling accumulation points. Practically, we proceed as follows: for each 
1, we find all the primitive periodic orbits with period l of the tent map T 
such that their symbolic sequence contains an even number of l's. By 
retaining only the largest point of each orbit, we have exactly all the lower 
bounds of the gaps of hierarchical level l. An elementary calculation shows 
at once that they are rational numbers of the form r = p/q where p is an 
even integer such that 2 ~< p ~< 2 l -  2 and q = 2 l -  1. For  instance, l = 3 gives 
one gap starting at 6/7, l =  4 gives again only one gap at 14/15, and l =  5 
gives three gaps starting at 26/31, 28/31, and 30/31, respectively. One may 
wonder how many gaps appear at a given level n. By the way, this is rele- 
vant also as it estimates the number of periodic windows in the chaotic 
region of unimodal maps. A precise answer is readily obtained in the 
following way: the number of primitive cycles of period n of the tent map 
T is given by 

1 
P n = -  2 #( m)2n/m (2 .10)  

FI rain 

where rnl n means that m divides n, /~ is the Mtbius  function, (1~ and 2 n/m 

is the cardinality of the set {x~IIT"/ ' (x)=x} .  Then we write P,,= 
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P +  + P~-, where P +  is the number  of cycles of period n with positive 
multiplier, whereas P;-  is the number  of those characterized by a negative 
multiplier. Some tedious but trivial calculations show that, in this 
particular case, if n is odd, then Pn is even and 

P+ = P,/2 (2.11 ) 

whereas if n = 2kq, with k ~> 1 and q an odd integer, then Pq is even and 

1 ( (  

(2.12) 

P~+ is simply the number  of  gaps of level n (see Table I for a list up to 
n = 18). In the next sections we shall be mainly concerned with the assign- 
ment  of a topological  entropy to each point  of A. It is known that this 
quant i ty  remains r igorously constant  over intervals which are larger than 
the gaps constructed with rule (2.7). In fact, as long as the asymptotic  
dynamics is confined inside a so-called periodic window, the topological 
entropy remains constant,  being determined by the "external" transient 

Table I. Number  of Primitive Periodic Orbits of Tent Map (4.1.) for 
Increasing Length n, Compared with the Number of Gaps 

(i.e., Period-Doubling Sequences) and the Number of 
Windows (i.e., Regions Where the Topological Entropy Remains Constant)  

Length Primitives Gaps Windows 

3 2 1 1 
4 3 1 1 
5 6 3 3 
6 9 4 4 
7 18 9 9 
8 30 14 14 
9 56 28 27 

10 99 48 48 
11 186 93 93 
12 335 165 163 
13 630 315 315 
14 1161 576 576 
15 2182 1091 1085 
16 4080 2032 2031 
17 7710 3855 3855 
18 14532 7252 7244 
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structure of a repeller. The attractor structure starts being again relevant 
only after a collision with an unstable periodic orbit has occurred, giving 
rise to a sudden expansion of its size, i.e., after an interior crisis. (11) 

As the most intriguing properties occur out of the windows, we restrict 
ourselves to this smaller set. Accordingly, we define a window as an interval 
in [0, 1] over which the topological entropy h is constant (Fig. 2). For  the 
sake of brevity we will use the symbol A to denote the set of those 
r ~ [0, 1 ] which are consistent and have a neighborhood where h is a non- 
constant function (actually increasing). 

It is well known that inside each periodic window of the bifurcation 
diagram of unimodal maps, the whole set of bifurcations observed over the 
"interesting" parameter range (e.g., #~  [0, 4] for the logistic map) is 
repeated exactly starting from the stable periodic orbit that defines the 
window. Likewise, inside each window, the whole structure of A repeats 
itself in a self-similar way. Of course, if one is interested in counting these 
intervals with the procedure summarized in Eqs. (2.11) and (2.12), one has 
to discard those windows that appear inside gaps of lower hierarchical 
level. This situation may occur whenever the periodic kneading sequence 
corresponding to the lower bound of a gap has a period l which is not 
prime, i.e., I = j . m  with j >  1 and m prime. In this case, if si=st+i for 
i = 1,..., l -  1, then the gap is contained in a preexisting one and must there- 
fore be discarded. In Table I the number of windows is compared with that 
of gaps. 

The precise location of the right extrema of windows in A can be 
determined from the following considerations: let (sl,..., st, Sl,..., gt) be the 
periodic kneading sequence corresponding to the leftmost extreme of a 
window. For  parameter values just below the critical value corresponding 
to interior crises, the chaotic dynamics occurs in l distinct bands, whose 
boundaries are defined by the iterates of the critical point Co (note that Co 
is always contained in a band). When the parameter reaches the critical 
value, the unstable periodic orbit created at the original tangent bifurcation 
collides with the boundaries of the chaotic region, so that the critical point 
c o follows, after a transient, its itinerary. This means that the kneading 
sequence which corresponds to the very end of the window is eventually 
periodic and reads (sl ..... ~, sl ..... Tt), where i t =  (sl+ 1)(rood 2). In other 
words, if r = p/q defines the lower bound of a window, the conjugate upper 
bound is 

2Z-lp+ 2 k - 1  
r'-- 2z_1 q (2.13) 

where k is an integer ranging over (1,..., mr) and m t denotes the number of 
windows of hierarchical level /. Moreover, the greater is p (recall that 

822/61/1-2-18 
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Fig. 2. (a) Bifurcation diagram of the logistic map; (b) topological entropy versus the 
universal parameter ~. An accurate scanning of part (a) allows one to locate the well-known 
periodic windows, which are immediately recognized in (b) as the regions where the entropy 
remains constant. 
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2 ~< p ~ U - 2 ) ,  the smaller is k. By the way, it is not hard to show that any 
rational number of the form (2.13) eventually forms a cycle of length r, 
where r ~< (q - 1 )/2, of the tent map T. By taking the difference v' - ~ and 
recalling that q = 2 t -  1, we get 

2 k -  1 
Al(k) = 2t_ 1(2t_ 1) , k=l,...,m, (2.14) 

namely, the width of the windows that appear at level l is not uniform: it 
decreases as p increases. This completes our construction of the set A. 

3. G R A P H S  A N D  M A R K O V  P A R T I T I O N S  

In the previous section we investigated the properties of the values 
that can be assumed by the universal parameter z in generic unimodal 
maps. Here, we show how the knowledge of v can in turn be translated into 
increasingly accurate descriptions of the grammatical rules of the chaotic 
language, by constructing suitable directed graphs. (4) The idea of using the 
theory of graphs to characterize dynamical systems is a very recent one and 
it follows from the possibility of interpreting each trajectory as a sequence 
of symbols. This is most obvious in the case of cellular automata, where the 
local variable, discrete, can be immediately considered as a symbol taken 
from a finite alphabet. (13~ In the case of dynamical systems, instead we 
must first introduce a generating partition which in turn allows us to 
encode each trajectory as a sequence of symbols which now represents the 
elements of the partition visited at each time. Partial applications of graph 
theory to one-dimensional maps can be found in refs. 1, 3, 14, and t5. 

There are various ways of constructing such machines. Here we 
present two alternative procedures: (i) a general one, introduced in ref. 1, 
which is based on the knowledge of FWs, and can be easily extended to 
generic symbol sequences, even not associated with dynamical systems; 
(ii) a more powerful one based on the knowledge of the map. 

In reviewing the first procedure, we need to introduce the concept of 
irreducible FW. 

Defini t ion.  An irreducible forbidden word is a forbidden symbol 
sequence which does not contain any shorter forbidden sequence. 

The irreducible FWs contain the relevant information which allows 
one to improve the knowledge of the grammatical rules as well as of the 
topological entropy h. In fact, when considering sequences of increasing 
length, it is precisely when we encounter a new irreducible FW that we 
"learn" something about the grammar. Now we describe the construction 
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of a graph, starting from the knowledge of irreducible FWs. First, let us 
order the FWs for increasing length, that is, once t(Fi) is defined as the 
length of the ith FW, let l(Fi)> l(Fj) for i>j. The equality can always be 
excluded, since, as already seen, there is at most one FW of length I for 
unimodal maps. Notice that some of the O's in the z expansion do not 
correspond to irreducible FWs, as the associated kneading sequence 
contains a shorter FW. 

To make the construction simpler, we exploit another property of 
unimodal maps. The first l(F/_l)-1 bits of the j t h  FW coincide with 
those of the ( j -  1)th FW. This is because each FW is found by iterating 
the same kneading sequence. The nodes of the graph are introduced to 
keep track of the past symbols, in order to prevent the generation of FWs. 
The starting node obviously corresponds to a complete ignorance about 
the past history of the string. The first symbol of the first irreducible FW 
is associated with an outgoing arrow that points toward the second node, 
which in turn is identified with that symbol, whereas the arrow associated 
with the other symbol points to node 1 itself, as it is not leading to FWs. 
More in general, referring to the j t h  node, the addition of a generic symbol 
to those associated with the node itself can lead to various cases, depending 
upon whether the resulting sequence sj (i) coincides with the next 
irreducible FW, (ii) contains a shorter FW, (iii) coincides with the first j 
symbols of the next FW, or (iv) other cases hold. 

In cases (i) and (ii) no arrows depart from the j th  node. In case (iii) 
the outgoing arrow points toward the new ( j  + 1)th node. In the last case, 
a link between the j t h  and the mth nodes must be created, where m is 
determined as follows. The sequence s/ is progressively shortened, by 
deleting the leftmost symbol, until it coincides with the sequence associated 
with a previously generated node. 

The procedure besides being quite general (as it can be easily extended 
to any sequence of symbols, without necessarily referring to 1D maps), also 
provides natural approximations for generic chaotic states, characterized 
by an infinity of irreducible FWs: it is sufficient to restrict the analysis to 
the FWs up to a given length n. In such cases we always find a finite graph 
closed onto itself. As already pointed out by Grassberger, <1) there is not 
immediate relation between nodes of the graph and possible elements of a 
Markov partition of the interval. In fact, all points corresponding to the 
same node share a suitable symbol sequence observed in the past, a 
property which cannot be unambiguously translated into belonging to a 
given subinterval, in noninvertible maps. Moreover, note that the existence 
of a finite number of irreducible FWs is a sufficient but not necessary 
condition to guarantee the existence of a MarkoV partition. The logistic 
map at the Misiuriewicz point (where the third iterate of the maximum falls 
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onto the fixed point with negative multiplier) is characterized by a Markov 
partition, (6) although there is an infinite sequence of irreducible FWs, in 
particular all strings of the type 012n0. Loosely speaking, we can say that 
the approximation of a generic chaotic dynamics in terms of a finite 
number of FWs resembles the approximation of an irrational number in 
terms of numbers characterized by a finite number of digits. Here, the 
maximum length of the strings considered plays the role of the number of 
digits. 

The analogy with irrational numbers can be pushed even further if we 
follow an alternative procedure which exploits the knowledge of the 
underlying dynamics to determine the graph. We start by recalling that Co 
is the abscissa of the maximum, and we denote by ci its ith iterate. The 
symbol 1 is associated with the interval 11 = (c0, Cl), while 0 corresponds to 
a point belonging to the interval I2 = (s Co), We now associate 11 and /2  
with the first two nodes of a directed graph. As f(I1)=1i u I2, we let two 
arrows depart from the first node, pointing toward nodes 1 and 2, 
respectively. In order to determine the evolution from the second node, we 
iterate 12. If f(I2)= [c3, cl] cointains c0, then f ( I 2 ) = 1 3  wll (with 13 = 
[c3, Co]), thus meaning that two links join node 2 with the new node 3 and 
node 1. In the opposite case, /3 is defined as f(I2), and a single arrow 
departs from node 2 to node 3, meaning that a FW of length 2 is present. 
The same procedure is straightforwardly extended to I3, and then to its 
iterates. From this construction it is easily seen that at least one link 
joining the ith node with the ( i+  1)th one is always present. Moreover, if 
a second arrow departing from node i exists, it points in the direction of 
node j, where j is the arithmetic distance from node i to the nearest node 
where another branching is involved. Such a property (which can be 
checked in the examples given in Fig. 3) will turn out to be particularly 
useful in the investigation of the convergence of h toward its asymptotic 
value. Unless an iterate ci of the maximum falls onto a previous iterate c i 
( j  < i), the resulting graph is infinite and we can ask which is the best way 
to close it onto itself to get a sequence of increasingly accurate machines. 
The most natural approximation is obtained by ordering the afore- 
mentioned images of Co from the smallest to the largest one. When 
considering the first i iterates of Co, let cib and c~o be the two iterates which 
are closest--from below, respectively above--to ci (see Table II for the 
logistic map at # = #o). It is obvious that the simplest approximations one 
can construct correspond to assuming c~ = % and/or ci = Go. Such a proce- 
dure turns out to be more powerful than the previous one, as it is able to 
recognize all cases characterized by a finite graph (i.e., the maximum 
belonging to, or being eventually mapped onto a periodic sequence). This 
is because now we do not limit ourselves to considering the first i bits of 
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Fig. 3. Three examples of directed graphs built from the logistic map x ' =  # x ( 1 -  x), for of 
(a) T = 1 (# = 4), (b) z = 8/9 (inside the period-three window), and (c) z = 0.901903... (/~ = P0). 

Table II. The First 20 I terates of the  M a x i m u m  c 4 =  1/2  of the  Logistic M a p  for  
la = P0, Ordered  f rom the  Smal lest  (cz)  to the  Largest One (c 1 ) 

Iterate Value Iterate Value 

2 0.0966164 8 0.5591397 
13 0.0990576 19 0.7084027 
10 0.1463383 20 0.8052600 
7 0.1735533 4 0.8750824 

18 0.2386996 15 0.8843875 
3 0.3402482 17 0.9344742 

14 0.3479025 6 0.9532984 
16 0.3985839 9 0.9609346 

5 0.4261327 12 0.9739086 
11 0.4869859 1 0.9745688 
0 0.5000000 
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the kneading sequence, but we exploit the knowledge of the actual value of 
the ith iterate of the maximum. As each approximation of the graph 
corresponds to choosing a suitable r value, we list in Table III the sequence 
of the approximants corresponding to the two previous approaches, which 
confirms the superiority of this second method. 

We have seen that the problem of finding an approximation of a given 
chaotic language corresponds to approximating the trajectory of the maxi- 
mum with an eventually periodic orbit. By definition, this corresponds to 
finding r values whose binary expansion is eventually periodic, i.e., rational 
z's. Therefore, the above-mentioned analogy between the problem 
of approximating a generic chaotic state with a finite graph and 
approximating an irrational number with rational ones is indeed very strict. 
The only relevant difference is that only a tiny fraction of the numbers in 
[0, 1 ] are consistent. As a consequence, the problem of finding the optimal 
approximations, which is solved by the continued-fraction expansion for 
irrational numbers, is here much more cumbersome. In particular the 
problem of finding the most irrational r is open. 

So far we have discussed the problem of constructing approximate 
graphs to generate a grammatically correct sequence. Such a problem 

Table I l l .  Sequences of Rational Approximants of T (Corresponding to the 
Logistic Map for p = P0), as Determined from the 

Two Methods to Constuct Finite Graphs a 

M e t h o d  1 M e t h o d  2 

I t e r a t e s  z 3 z fi r 

3 ~ - 1 . 3 x 1 0  2 1 9 . 8 x 1 0  2 

4 14 3.1 x 10 2 1--4 3.1 x 10 - 2  
I5 15 

5 28 1 . 3 •  9___ 10 - -1"9  X 1 0 - 3  ~'~ 1 " 3 •  

8 46 5.7 X 10 -5  46 5.7 X 10 -5  

9 101 --  1.2 X 10 4 
112 

11 616 - 3 . 2  • 10 - 7  469 1.9 x 10 -5  
683 520 

12 1039 6 . 0 •  10 6 
1152 

14 14776 6.8 x 10 - 8  3687 4.3 x 10 - 6  
16383 4088 

16 18471 6.1 x 10 7 
20480 

17 118214 4.4 x 10 - 6  
131071 

18 236428 9.7 x 10 - 7  59109 5.5 x 10 7 
262143 65538 

20 945714 3.0 >( 1 0 - 7  47285 - 3 . 3  x 10 7 354643 9.9 x 10 8 
1048575 52428 393216 

a ~ i n d i c a t e s  t h e  d i f f e r ence  b e t w e e n  t h e  a p p r o x i m a t e  a n d  a c t u a l  v a l u e s  o f  7. Reca l l  t h a t  t he  f i rs t  

a p p r o a c h  y ie lds  o n l y  u p p e r  b o u n d s  to  t h e  a s y m p t o t i c  va lue .  
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seems to be intimately related to that of finding suitable Markov partitions, 
with their associated transition matrices, although in this last case, 
grammatical questions are not immediately involved. We have already seen 
that the first method to construct a graph does not indicate precisely 
located subintervals. The second procedure has instead shown that the 
nodes (or, more precisely, the links (al) correspond to different intervals, but 
a problem still remains, since they are overlapping intervals, and we cannot 
split them without jumping into an endless zoo of intervals. However, this 
last method suggests a way out to the construction of an approximate 
Markov partition with a related graph. 

Let us solve the problem into two steps. First, after having ordered the 
first i iterates of the maximum, and having identified ci with the nearest cj, 
we can introduce the set of intervals I m = [Ck ,  Cl] (m ~ {0,..., i}), where cl 
is the closest iterate of Co larger than ck. The resulting transition matrix for 
the logistic map and i = 7 is represented in Fig. 4 as a directed graph, the 
only difference from previous graphs being that the links are not to be 
associated with the usual symbols 0 and 1. Second, we construct a graph 
by scanning the infinite symbol sequence backward in time. Such an opera- 
tion obviously leaves the topological entropy unchanged as well as, more 
in general, the number of allowed strings of any length. However, we 
expect to find different grammatical rules for the two graphs, unless the 
FWs are all palindromic. Therefore, we cannot expect the graph associated 
with the inverted sequence to be equal to the direct one. Anyway, we can 
imagine inverting all FWs and applying the first procedure to build a 
graph. The main difference is that now the irreducible FWs do have the 
final rather than the starting part in common. This leads to a first more 

Fig. 4. 

| ,(Q)' �9 

Graph describing the transition matrix of an approximate Markov partition resulting 
from the first eight iterates of the logistic map, for tz =/to. 
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complicated graph (in Fig. 5b we present the result for our typical chaotic 
case, with nine nodes to be compared with the seven nodes resulting from 
the standard procedure, Fig. 5a). However, the Myhill-Nerode theorem (4) 
allows one to minimize a given graph by grouping the equivalent nodes. 
This is easily done by recognizing those nodes having the same "future." In 
the case presented in Fig. 5c, it is first recognized that nodes 6 and 9 
coincide, so that nodes 4 and 8 can be identified, too, As a result, the final 
graph contains the same number of nodes as the one obtained by iterating 
forward in time (see Fig. 5c), although they remain different after any 
relabelling of the nodes. 

Each node of the new graph corresponds to all points displaying the 
same suitable sequence in the future, a property which unambiguously 
identities disjoint subintervals o f / .  Accordingly, we expect a close relation 
with an approximate Markov partition to exist in this case. In fact, by 
inverting the sign of time in Fig. 5b (i.e., reversing the direction of the 

~) 

, C f e @ e  ~ >e ' >0 
1 1 

�9 |  

b) 

$ 0 

c) 

01 

Fig. 5. (a) The graph describing the regular language characterized by the irreducible FWs 
000, 0011, and 0010100, i.e., a suitable truncation of the graph in Fig. 3c; (b) graph obtained 
by reversing the FWs; (c) graph (b) after minimization. 
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arrows) we obtain a graph which is easily shown to coincide (after a 
suitable relabeling of the nodes) with the one in Fig. 4. The correctness of 
this identification is further confirmed by comparing any two equivalent 
nodes, i~ in Fig. 4 and i a in Fig. 5b. Node i~ corresponds, by construction, 
to the subinterval Iil. If we now look at the symbol sequences displayed, 
in the future, by all points in I h, it is straightforwardly verified that they 
have in common the bits requested by the graph in Fig. 5c for all 
trajectories passing through the node i2. 

We can summarize the above results by recalling that two types of 
graph can be constructed running through an infinite sequence of symbols 
either backward or forward in time. The graph built by going backward is 
nothing but the transition matrix associated with an approximate Markov 
partition, upon inverting the links. 

Finally, let us comment on the significance of constructing a Markov 
partition by going backward in time when dealing with a noninvertible 
transformation. Such a result is guaranteed by the existence of a unique 
natural extension of the dynamical system. Roughly speaking, it is an 
automorphism, the dynamics of which is characterized by the same graph 
of the original transformation. (12) 

4. TOPOLOGICAL ENTROPY 

Independent of the procedure adopted, a directed graph can always be 
interpreted as a suitable transfer matrix (the adjacency matrix of the graph) 
whose largest eigenvalue yields the topological entropy h (~3'16) (see next 
section). However, if one is interested only in the largest eigenvalue, a 
superconvergent method can be introduced without resorting to the 
determination of any matrix. As observed in the Section 2, r can be 
considered as a universal parameter. This implies that all the maps 
characterized by the same r value exhibit the same topological entropy. 
This is also true in particular for the map 

xn+l =mxn xn< 1/2 
(4.1) 

x ,+ l  =m(1 - x , ) ,  x , >  1/2 

which is a uniformly expanding one [one that (4.1) reduces, for m =  2, to 
the tent map (2.4)]. Its Lyapunov exponent coincides with its topological 
entropy and it is equal to log m. As a sequences, given any Vo deduced from 
the kneading sequence of a generic unimodal map, its is sufficient to 
determine the value of the multiplier m such that the following equality 
holds: 

~ (m)=% (4.2) 
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where z(m) is the T value associated with map (4.1). To give an idea of the 
accuracy that can be reached with little numerical effort, we give the 
estimated value of h for/~ = #o, 

h = 0.5390979671968752099740236... 

a number accurate up to the 25th digit. The advantage of referring to map 
(4.1) is twofold. On one hand we have a linear map, whose topological 
entropy is a priori known; on the other hand, by changing the parameter 
m, only the r values corresponding to an increasing h are scanned. More 
precisely, not only the admissible r's are generated, which is obvious by 
construction, but the whole windows in A where h remains constant are 
automatically discarded. This is because map (4.1) is everywhere expanding 
so that no periodic windows in parameter space can be detected. 

We are now in the position to construct the universal curve h(r) 
depicted in Fig. 2. Such a curve can indeed be considered as universal 
insofar as we can determine r from the kneading sequence of any unimodal 
map. It is sufficient to plot Eq. (4.2) considered as a functional relation 
between z and h = log(Lm]). The fractal-like structure of h(r) suggests that, 
upon rescaling of h(~) to f t(r)=h(r)/h(1),  it can be interepreted as a 
suitable integrated measure onto a fractal support (like, e.g., a complete 
devil's staircase). In other words, we argue that, whenever h(r) is not 
locally constant, it is a H61der continuous function (of class C t~ with/~ > 0). 
This is analogous to what rigorously was proved by Guckenheimer (17) 
about the dependence of topological entropy on the control parameter 
(# for the logistic map). As we will show, our choice of universal parameter 
allows us to estimate the actual value of the H61der exponent defined by 

fl = lira log(/~(r + 5~) - /~(~))  
~,~o log(5~) 

(4.3) 

A multifractal approach might appear as the most natural way of 
describing the topological entropy behavior. However, this is not the case. 
Indeed, although fl depends on r, as in a generic multifractal set, it varies 
in a continuous way with /~(z), so that the most appropriate way of 
characterizing the set of admissible ~'s is in terms of a function/~(/~). 

Before proceeding in this direction, let us now give a physical inter- 
pretation of the H61der exponent/~. It indicates the rate of change of the 
rescaled topological entropy when r is changed by an infinitesimal amount. 
In particular, we can think of it as measuring the effect of changing the nth 
bit (for q sufficiently large) of the z expansion. In other words, it evaluates 
the effect on h of increasing the knowledge of the kneading sequence. Thus, 
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the existence of a finite H61der exponent can be rephrased as the scaling 
hypothesis 

hn - h ~ exp(-/~n) (4.4) 

where hn indicates the estimate of h at the nth hierarchical level, and 
= fih(1). Accordingly,/~ represents the exponential rate of convergence of 

h. Numerical simulations performed around r =6/7 and r=52/63 (see 
Fig. 6) suggest that /~=h. By making use of the "equivalent" piecewise 
linear map (4.1), it is possible to prove that 

g<~h (4.5) 

Instead of fixing an infinitesimal change 6r of r and looking at the entropy 
change 6h, we look at the value of 6z induced by a variation 6m of the 
multiplier m (which corresponds to a variation 6h = 6m/m of the topologi- 
cal entropy). This formally corresponds to iterating the abscissa of the 
maximum ( x =  1/2) with map (4.1) with two slightly different m values. By 
differentiating Eq. (4.1) with respect to x and m, we determine a recursive 
relation for the distance 6xn between the two trajectories after n iterates, 

6x.+ ~ =u .  6m + b.m 6x~ (4.6) 

where bn is the sign of the multiplier, and un = x,  (un = 1 - xn) if xn < 1/2 
(xn > 1/2). A formal solution of Eq. (4.6) reads 

Xn+ l l--[ i = b~_ju,_im (~m (4.7) 
i = 0  j = O  

where the product of zero elements is defined to be equal to 1. An upper 
bound to Eq. (4.7) is determined by assuming all signs to the equal and 
setting u,_ ~ equal to the maximum value 1/2, 

m n + l - 1  c~m 
cSxn+ 1 - m - 1  2 (4.8) 

The order of magnitude of the difference between the kneading sequences 
(and, in turn, of 6z) is 2-n, where n corresponds to the order of the iterate 
when 6x, is (9(1). In other words, by setting the rhs of Eq. (4.8) equal to 
1, then, apart from multiplicative factors, we find 6m ~ m  n. By finally 
expressing m and 6m as functions of h and 6h, we indeed find that h 
represents an upper bound to the rate of convergence /?, as stated by 
Eq. (4.5). 

Although it is quite reasonable to conjecture that/3, generically, coin- 
cides with h as suggested by our numerical simulations, it is not an easy 
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Fig. 6. Scaling behavior of h(z) in the vicinity of two different gap edges (a) ~=6/7  
(b) z = 52/63. 
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matter to prove that slower rates of convergence cannot be detected. In 
fact, the shadowing lemma, roughly speaking, guarantees that for any tra- 
jectory generated by a hyperbolic dynamical system, it is always possible to 
finid a second orbit, which, iterated according to a second ("approximately 
equal") dynamical system, remains close to the first one. While it appears 
rather unlikely that both trajectories start in general from the same initial 
condition (as requested, since, in our problem, they have to correspond to 
the orbits originating from the maximum x = 1/2), we cannot exclude that 
this is the case in some exceptional circumstances. The meaning of relation 
(4.5) is that the topological entropy is better estimated in the most chaotic 
systems, where a wider set of admissible words is found. In contrast, the 
least chaotic dynamics are more difficult to quantify. This seemingly 
paradoxical result is qualitatively understood by noting that the accuracy 
on the estimate of h can be increased whenever the occurrence of a longer- 
length FW can be either discarded or taken into account. This is not the 
case of all the symbols that must be necessarily inserted in the kneading 
sequence for consister/cy reasons. Since in the least chaotic systems (where 
r is smaller) these cases are more frequent, we have to go through a larger 
number of bits before reaching a preassigned accuracy. 

The question on the convergence rate of hn is analogous to, though 
different from, the convergence of block entropies, considered by Gy6rgy 
and Szepfalusy (~8) and by Grassberger. (~9) The first, marginal, difference is 
that they were interested in metric rather than topological entropies. There- 
fore, let us first give the definition of the topological block entropy, 

H(n) = log N n + l - log N,  (4.9) 

where N, is the number of admissible sequences of length n. As is well 
known, h is the limit 

h =  lira H(n) (4.10) 
n ~ o o  

The main difference between H(n) and h n is immediately seen by referring 
to a chaotic state characterized by a finite number of irreducible FWs. In 
such a case, the correct value of h is exactly recovered from the correspond- 
ing finite graph, while H(n) converges only asymptotically to the correct 
estimate. This is because the second eigenvalue exp(h (2~) will be in general 
nonzero, indicating 

Nn -~ a1 exp(hn) + a2 exp(h(2)n) (4.11) 

(here, for the sake of simplicity, we assume the second eigenvalue to be 
real, too) so that h - h  ~2~ measures the rate of convergence of the block 



Universal Encoding for Unimodal Maps 285 

entropies. Notwithstanding this more relevant difference between hn and 
H(n), we have to register the analogy between the convergence rate fl intro- 
duced in this paper (equal to the topological entropy) and the convergence 
rate of metric block entropies which was shown to be equal to half of the 
metric entropy in ref. 18. Accordingly, this difficulty of providing a 
quantitative characterization of weakly chaotic systems confirms the idea 
proposed by some authors ~I3'~9"2~ that the most complex behavior has to 
be expected between the two extrema of ordered and fully random states. 

5. S P E C T R A L  P R O P E R T I E S  

In this section we concentrate on the spectral properties of the directed 
graphs constructed above. As far as topological features are concerned, all 
the relevant information about dynamics is stored in the adjacency matrix 
A whose entries a~ are given by 

f l if nodes i and j are connected by an arrow i --* j 5.1 
a~ = otherwise 

( ) 

It follows directly from the definition and from a rapid glance at the struc- 
ture of these graphs that aii= 1 only if i =  1, a ~ = 0  i f j > i +  1, and ao= 1 
if j = i + 1. For j < i, aij r 0 whenever a cycle of period i -  j + 1, in which 
i and j are consecutive nodes, occurs�9 To summarize, the generic structure 
of the adjacency matrix for graph F with n nodes is 

a21 0 1 -.. 

i �9 , �9 

a 1 an2 

(5.2) 

Note that the number of entries r  in the lower triangular submatrix 
(including the diagonal) is nothing but the number of cycles of period 
1 ~ p ~< n occurring in F. Since the structure sketched in (5.2) corresponds 
to a particular labeling of the nodes in the graph, it is clear that we shall 
be interested primarily in those properties of A which are invariant under 
permutations of the rows and columns. Foremost among such properties 
are the spectral properties. For instance, the topological entropy of the 
mapping associated with A is given by 

h = log Zm.~ (5.3) 
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where 2max is the largest eigenvalue of A. This can be intuitively understood 
by observing that, generically, in the regular binary language generated by 
a graph, only some number Nt of the 2 t possible sequence of l symbols may 
occur. This number is provided exactly by the sum of all the elements of 
u, = Atuo, where u0 is the vector specifying the intial condition, with all the 
elements equal to 0 except for the first one, corresponding to the initial 
node, equal to 1. As all the elements of u~ are positive, their sum constitutes 
a norm, so that, for large l, 

N , =  ]lulH l )~max (5.4) 

and (5.3) follows from 

1 
h = lina 7 N, (5.5) 

The whole set {2~} of eigenvalues of A is determined from the characteristic 
polynomial ;~(2). This is an interesting invariant that can be written in the 
form 

Z ( 2 ) = ~ f  + c l 2 n - l  +c2) f -2 . - [ -  . . .  q-c n (5.6) 

Note that the coefficient of 2 n is 1, so that the largest (real) root of Z(2) 
is always an algebraic integer. Furthermore, it is well known that for each 
k~ {1 ..... n} the number ( -  1)kCk is the sum of those principal minors of A 
which have k rows and k columns. This means that (1) since the diagonal 
elements of A are all zero except for a11, - c l  = 1, and (2) a principal 
minor with two rows and two columns, and which has a nonzero entry, 
must be of the form 

a~ 1 0 1  

where ai~ = 1 if i = 1 and aig = 0 otherwise. There is one such minor for each 
irreducible 2-cycle occurring in F, and each has value - 1 .  Hence 
( -1 )2c2  = - ( n u m b e r  of 2-cycles in F). 

Iterating this procedure, one easily finds the following interpretation of 
the coefficients ck: 

where the sum is over all the combinations of distinct nonrepeated cycles 
of _F whose total length sums up k, and N~ is the number of such combina- 
tions with j elements. 
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This formula turns out to be very useful in that it can provide a 
further, and more general, justification to the scaling relation for the 
topological entropy [see Eqs. (4.4) and (4.5)]. Indeed, suppose we have 
constructed a graph Fn which takes into account all FWs up to length n. 
Then, suppose we discover the existence of another (nontrivial) FW of 
length > n. The most significant change in the estimate of h is found when 
the length of the new FW is n + 1. Therefore, we restrict ourselves to this 
simplest case. Accordingly, from the discussion presented in Section 3, the 
(n + 1)th node of the graph F , + t  returns back to the k'th node, with k'~< 
k + 1, where k labels the node where the nth node of F ,  returns back. In 
other words, if 

X(Fn ;2 )=2"+c12"  l - J -  C 2 / ~ n - - 2 - { -  " ' "  " ~ C  n 

is the characteristic polynomial of F , ,  then the first n - k  coefficients of 
)~(F.+~; 2) remain unchanged and 

z ( v ,  + ~; ,~) = & ( G ;  ,z) + & (5.8) 

where A k is a polynomial of degree at most k. In particular, if k' = k  + 1, 
dk is simply the constant c,+~. Let us denote by 2,  the solution of 
) f f F , ; 2 , ) = 0 ,  and by 2 , + 6  the solution of z ( F , + , ;  2 , + 6 ) = 0  
(obviously, &<0). By assuming 6 small, we can write )~(F,; 2 , + 6 ) ~  

t . ~ n - - I  cS)~ (F, ,  2,) ,  with z ' (F, ;  2 , )  of order z ,  . Putting everything together and 
solving for 6, we obtain 

161 ~ d k 2 . "  (5.9) 

If k, for n --+ oo, remains finite, which is true for typical chaotic cases where 
the trajectory frequently returns to the initial nodes, Ak provides an 
irrelevant correction to the prefactor, and we recover the result f l=h .  
Again, we are faced with the problem that nongenerie parameter values can 
exist where a slower convergence is expected. 

Furthermore, formula (5.7) is useful in that it allows us to identify a 
set of invariants entirely determining the spectrum of A. We point out that 
the knowledge of the whole set {2i} of eigenvalues of A would be equally 
informative, as it summarizes in a compact fashion the essential informa- 
tion about the number N t of admissible finite blocks for all l's. As we have 
seen above, the way in which this information is summarized passes 
through a suitable storage of some fundamental periodic configurations 
occurring in the graph. For instance, the characteristic polynomial of the 
graph reported in Fig. 3a is simply 

2 - 2 = 0  

822/61/1-2-19 
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giving the well-known result h = l o g  2. A more interesting example is 
provided by the graph shown in Fig. 3b, originating from a �9 located inside 
the period-3 window. In this case one finds 

2 5 - 2 4 - 2 3 - 2 2 + 2 +  1 = 0  

and this polynomial can be decomposed as 

(22 - 2 - 1 )(23 - 1 ) = 0 

Note that the left-hand part is the characteristic polynomial of the first 
transient subgraph in Fig. 3b (up to noded 2). It gives two eigenvalues at 
2 = (1 + xf5)/2. On the other hand, the right-hand part is the characteristic 
polynomial of the recurring subgraph in Fig. 3b (involving nodes 2, 4, 
and 5), which gives a threefold degenerate eigenvatue at 2 = 1. The largest 
eigenvalue is provided by the transient subgraph, and the topological 

entropy is h = log((1 + xf5)/2). This is indeed a typical situation: whenever 
a graph is constructed from a r located inside a window, it can be decom- 
posed into a transient part, which provides the largest eigenvalue, and a 
final one. The transient subgraph is the same throughout any given 
window: it is defined once and for all by the periodic kneading sequence 
corresponding to original tangent bifurcation. So, the largest eigenvalue of 
the whole graph does not care at all how complicated the final structure of 
the graph is. This frozen situation ends when the largest eigenvalue of the 
final subgraph collides with the largest eigenvalue of the transient part, i.e,, 
when an interior crises occurs. This explains the constancy of the 
topological entropy inside the periodic windows. 

Our last example is devoted to a comparision between the spectral 
properties of the graphs shown in Figs. 4, 5a, and 5c. Although these 
graphs are quite different from each other, it easy to check, by virtue of 
Eq. (5.7), that they exhibit the same characteristic polynomial, 

2 7 - - 2 6 - - 2 5 - - 2 4 + 2 3 + 2 2 - - 2  - 1 = 0  

whose eigenvalues are 

2ma x = 1.71565 

21,2 = 0.801255 _+ i- 0.515914 

23 ,  4 = -0.475503 _ i. 0.986406 

25 ,  6 = -0.683578 ___ i. 0.260686 

This suggests that the different methods of constructing graphs discussed in 
Section 3 are effectively consistent: they yield the same spectral properties. 
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Finally, let us note that just as the number of finite blocks N~ for all 
/'s may be summarized in the characteristic polynomial ;g()~), so also the 
number N(p) of cycles of period p may be stored in a topological 
(-function (m 

j ~(z) =exp  --N(p) (5.10) 
l P  

Since N(p) is the trace of A p, one has at once that 

l(z)=det(1- zA) (5.11) 

so that the inverse of the roots of Z(2) are the poles of ~(z). In particular, 
the infinite series in (5.10) converges for [zl < e  -h. Furthermore, from 
(5.11) we have that whenever the graph is finite (i.e., for regular languages), 

is a rational function, (22) being essentially 1/L Again, among the infinite 
set of the N(p), it is a certain number of fundamental configurations that 
outline the analytic structure of ~. 

Let us mention that in a more general context (where one may 
associate a weight to each cycle, so as to investigate metric properties as 
well) some authors have recently constructed a nice procedure to evaluate 
~-functions analogous to (5.10). Briefly, this procedure consists in 
expressing ~ 1 as a cycle expansion where terms are grouped into dominant 
contributions and curvature corrections due to nonlinearities. (23) In this 
approach, whenever some pruning rules are present (i.e., the set of FWs is 
not empty), cycle expansions are written by redefining the alphabet (so as 
to implement such rules) and considering any possible sequence in the new 
language as allowed. 

As a matter of fact, in those situations where FWs of considerable 
length are present, this seems to be a very hard task, sometimes quite 
hopeless. In our opinion, at least insofar as topological properties are 
concerned, a way out is provided by the procedure here described: 
whatever the original dynamical systems may be, once the set of FWs is 
known, the graph constructed from such a set provides directly those 
fundamental configurations that turn out to control the spectral features of 
the dynamics. If the set of FWs is infinite, the accuracy of any finite 
approximation is ruled by (5.9). 

6. C O N C L U S I O N S  

Throughout  the paper we have seen how all relevant information 
about the topological features of a "generic" chaotic state can be 
implemented with increasing accuracy in terms of suitable directed graphs. 
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For unimodal maps this is a particularly simple task. However, for more 
general dynamical systems, the construction of an accurate encoding proce- 
dure is still a question far from being exhaustively answered. Of course, the 
knowledge of the topological graphs here discussed can be exploited even 
further. For  instance, we claim that the distribution of the zeros of t h e  
characteristic polynomial )~ (see Section 5), if suitably interpreted, would be 
informative in that it would provide a global characterization of the 
topological complexity of the dynamics. We shall report elsewhere on 
detailed studies of the spectral properties of graphs associated with 
unimodal 1D maps as well as with some 2D maps for which a method to 
extract the set of FWs is now available) s) 

Furthermore, even though an appropriate encoding technique is given, 
so that topological graphs can be produced, it still remains to set up an 
efficient procedure to extract also metric information from such graphs. In 
principle, this should be done by associating a probabilistic weight to each 
node of the graph according to the region in phase space (e.g., the element 
of some partition) to which it can be suitably related. The correspondence 
between graphs and Markov partitions (or approximate versions of them) 
discussed in Section 3 provides some reassuring items to this purpose. 

Such an extension of the procedure described in this paper would give, 
for instance, an alternative scheme for constructing finite-dimensional 
approximations of the Perron-Frobenius-Ruelle transfer operator, whose 
eigenvalues allow one to determine a variety of physically interesting 
averages. 
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